'''
Created on Sep 8, 2011
@author: gonengyucel, jhkwakkel
'''
import matplotlib.pyplot as plt
from analysis.clusterer import cluster
from expWorkbench import load_results
from expWorkbench import ema_logging
ema_logging.log_to_stderr(ema_logging.INFO)
#load the data
data = load_results(r'..\gallery\data\100 flu cases no policy.bz2')
# specify the number of desired clusters
# note: the meaning of cValue is tied to the value for cMethod
cValue = 5
#perform cluster analysis
dRow, clusters, z = cluster(data=data,
outcome='deceased population region 1',
distance='gonenc',
interClusterDistance='complete',
cMethod = 'maxclust',
cValue = cValue,
plotDendrogram=False,
plotClusters=False,
groupPlot=False,
sisterCount=100,
tHoldCurvature = 0.1,
tHoldSlope = 0.1
)
#the plotting
fig = plt.figure()
#for each cluster
for i, cluster in enumerate(clusters):
#get the data
values = data[1]['deceased population region 1']
values = values[cluster.indices]
#some index mangling to get correct index for ax
index = str(cValue) + "1"+str(i)
index = int(index)
#make an ax
ax = plt.subplot(index)
#plot data
ax.plot(data[1]["TIME"].T, values.T, )
plt.savefig("./pictures/cluster_example.png", dpi=75)