Created on 16 aug. 2011
This module contains various classes that can be used for specifying different types of uncertainties.
Code author: jhkwakkel <j.h.kwakkel (at) tudelft (dot) nl>
Bases: object
AbstractUncertainty provides a template for specifying different types of uncertainties.
the values that specify the uncertainty
the name of the uncertainty
the type of integer
the datatype of the uncertainty
a string denoting the type of distribution to be used in sampling
Parameters: |
|
---|
get values
Bases: uncertainties.AbstractUncertainty
ParameterUncertainty is used for specifying parametric uncertainties. An uncertainty is parametric if the range is continuous from the lower bound to the upper bound.
Parametric uncertainties are either floats or integers.
optional attribute for specifying default value for uncertainty
Parameters: |
|
---|
return default value
Bases: uncertainties.ParameterUncertainty
CategoricalUncertainty can can be used for sampling over categorical variables. The categories can be of any type, including Strings, Integers, Floats, Tuples, or any Object. As values the categories are specified in a collection.
Underneath, this is treated as a integer parametric uncertainty. That is, an integer parametric uncertainty is used with each integer corresponding to a particular category. This class called by the sampler to transform the integer back to the appropriate category.
the categories of the uncertainty
Parameters: |
|
---|
transform an integer to a category
transform a categoy to an integer